
Psychological Task Design
& Development

A Programming Workshop

Part IIC – Advanced Programming

Wouter Boendermaker, M.Sc.

Johanna Quist, M.Sc.
Soraya Sanchez Maceiras, B.Sc.

University of Amsterdam

EPP Programming Workshop – February 12-13, 2015

4-Step Programme to Programming

Programming: Manipulating stuff through code

I. Variables (store values & complex Objects)

II. Operations (manipulate variables)

III. Decisions (make your program dynamic)

IV. Repetitions (i.e., how to avoid them!)

IV. Repetitions - Functions
Functions (or methods) are a combined set of operations.

First we describe a function:
function <functionName>(
 <param1>:<dataType>,
 <param2>:<dataType> = defaultValue) :returnType {
 // code block
}

Note:
• Only the order of the parameters is important
• Next we can call the function from another function to dynamically execute a

piece of code:
 functionName(<argumentA>, <argumentB>);

IV. Repetitions - Example
function Test() :void {
 var myText:String = "Hello world!";
 saySomething(); // "nothing"
 saySomething(myText); // "Hello world!“
 trace(double(2)); // 4
}

function saySomething(sayMe:String = "nothing") :void {
 trace(sayMe);
}

function double(doubleMe:Number) :Number {
 return 2 * doubleMe;
}

Note:
• The return type void means nothing is returned
• The order of the function descriptions doesn’t matter; the function calls do!

Exercise 5 - Functions
1. Download epw_ex5.zip from www.wouboe.nl
2. Open Exercise5.as and Exercise5.fla in Flash

3. Create a global variable called myName (String)

and with value your name. Make a function
called testMe that accepts two Strings as
arguments: one called testName, and one called
letter with default value "a". The function
returns a value of type Boolean.

4. Make this function return true if the letter is in
the provided testName, and false if it’s not. Call
the function from your constructor function ,
once without the second argument and once with,
and use trace() to view the results.

http://www.wouboe.nl/

IV. Repetitions – Classes (1)
Classes are even more elaborate descriptions (blueprints) for
(sometimes very complex) Objects.

Objects can be variables, functions, data structures, etc., as well as
instances of a Class.

Flash has many Classes available, but also allows us to write our own.

Using Classes and Objects, we can apply Object-Oriented
Programming techniques to our designs.

e.g., one Car Class using 4 separate instances of the Wheel Class.

IV. Repetitions – Classes (2)
A Class description can hold any number of
• Properties (variables)
• Methods (functions)

To make a new instance of a Class, the new operator is used:
 var myArray:Array = new Array();

 var myTextField:TextField = new TextField();

 var myCustomClass:IAT = new IAT();

Note:
• There is an important difference between the data type

and the instantiation of a Class.

IV. Repetitions - Example
Class Car extends MovieClip {
 function Car() :void {
 var wheel1:Wheel = new Wheel();
 var wheel2:Wheel = new Wheel();
 wheel1.radius = 12; // sets only wheel1 to 12
 trace(wheel2.whatIsMySpeed()); // 10
 }

}

Class Wheel extends MovieClip {
 var radius:uint; // global vars
 var speed:int = 10;
 function Wheel() :void {
 // ...
 }
 function whatIsMySpeed() :int {
 return speed;
 }
}

Note:
• The Classes should be in separate files, each bearing their respective names.
• Each instance of the Wheel class behaves completely separately.

Exercise 6 - Objects
1. Download epw_ex6.zip from www.wouboe.nl
2. Open Exercise6.as and Exercise6.fla in Flash

3. Make a new global variable called myArray with type

Array (mind the capital A!). In your constructor
function, instantiate the Array with

 myArray = new Array();
4. Use the push() function on your new myArray Object

to add some elements to it (see online help file).
5. Make a new function called sum()that accepts an

Array as input and returns a value of type Number,
which is the sum of the elements in the received Array.
Hint: use a loop.

6. Challenge: make two functions that (similarly) return
the mean and the SD. Have each of these functions use
the previous ones if applicable.

http://www.wouboe.nl/

V. Visuals – Sprite & MovieClip
So far we’ve only used the output panel. Let’s see how we can make
some visuals inside the actual .swf file!

Flash has several types of displayable Object types, the most
common of which are called the Sprite and the MovieClip
Classes.

To make a new instance of the MovieClip Class, use
var myVisual:MovieClip = new MovieClip();

Now we can use all kinds of built-in functions to draw on the canvas:
myVisual.graphics.beginFill(0x0099FF);
myVisual.graphics.drawRect(0, 0, 50, 50);

V. Visuals - stage
Flash uses an infinite number of canvases to show its visual
assets. The main canvas is called the stage. To make things
available on this stage, we use the addChild() function:

stage.addChild(myVisual);

Similarly, we could add a second visual to the first:

myVisual.addChild(mySecondVisual);

VI. Interaction - Events
Next, to interact with the user, we can make use of user Events.
NB: Flash is event-based and uses many different types of Events (also e.g., time based).

To make our myVisual clickable, we use EventListeners.
EventListeners use three properties:
1. Which Object listens?
2. What type of Event do we listen to?
3. What do we do when we hear it?

myVisual.addEventListener(MouseEvent.CLICK, onClick);

function onClick(evt:MouseEvent) :void {
 trace(evt);
}

VI. Interaction - Events
Next, to interact with the user, we can make use of user Events.
NB: Flash is event-based and uses many different types of Events (also e.g., time based).

To make our myVisual clickable, we use EventListeners.
EventListeners use three properties:
1. Which Object listens?
2. What type of Event do we listen to?
3. What do we do when we hear it?

myVisual.addEventListener(MouseEvent.CLICK, onClick);

function onClick(evt:MouseEvent) :void {
 trace(evt);
}

Exercise 7 – Interactive Visuals
1. Download epw_ex7.zip from www.wouboe.nl
2. Open Chessboard.as and Chessboard.fla in Flash

3. Finish the code to make an interactive chess board.

Hints:
• Use a nested loop (a loop within a loop, like if within an if) to

make a two dimensional board.
• Use the modulo operator to get the chessboard pattern
• Every space on the board should be an individual MovieClip, with its

own EventListener.
• From the listener function, trace the coordinates of the space.
• Challenge: Make a TextField to show the coordinates on the stage

instead. When a white square is clicked, make it change color. Reset
the text and color after 1000 ms.

NB: An example of the finished task can be found online.

http://www.wouboe.nl/

Additional Exercises
Explore the following:
• Showing assets:

• Embed a picture and a sound
• When the task starts, present a button
• When the button is clicked, show the picture (and remove the button)
• Present the sound when the picture is clicked
• When the sound is done playing, remove the picture

• Dynamically loading in pictures (at runtime)

• Randomisation

• Making a trial structure

• Make a little memory game 

	Psychological Task Design �& Development� �A Programming Workshop�Part IIC – Advanced Programming�
	4-Step Programme to Programming
	IV. Repetitions - Functions
	IV. Repetitions - Example
	Exercise 5 - Functions
	IV. Repetitions – Classes (1)
	IV. Repetitions – Classes (2)
	IV. Repetitions - Example
	Exercise 6 - Objects
	V. Visuals – Sprite & MovieClip
	V. Visuals - stage
	VI. Interaction - Events
	VI. Interaction - Events
	Exercise 7 – Interactive Visuals
	Additional Exercises

