
Psychological Task Design
& Development

A Programming Workshop

Part IIB – Programming Basics

Wouter Boendermaker, M.Sc.

Johanna Quist, M.Sc.
Soraya Sanchez Maceiras, B.Sc.

University of Amsterdam

EPP Programming Workshop – February 12-13, 2015

4-Step Programme to Programming

Programming: Manipulating stuff through code

I. Variables (store values & complex Objects)

II. Operations (manipulate variables)

III. Decisions (make your program dynamic)

IV. Repetitions (i.e., how to avoid them!)

I. Variables - Names
Variables are used to hold all kinds of data.

Naming
• No spaces allowed in variable names: use CamelCase
• Common conventions (not compulsory, but strongly advisable):

1. Write all words together, starting each new one with an UpperCase:
• myVarName
• MyClassName

2. Another variant is using underscores (_) instead of spaces:
• MY_CONST

• Please use just one style: have a system, make your code readable!

I. Variables - Syntax
Declaring (making) a variable, data typing and assigning a value:

 var <varName>:<dataType> = value;

• var indicates to Flash “I’m declaring a new variable here”.
• <varName> can be anything, but make sure it makes sense.
• :<dataType> tells Flash what type of data is stored.

 NB: Variables in Flash are strongly typed: once assigned,
 you cannot assign a differently typed value to it.

• = value use a single = to assign a value to the variable.
• ; End every command with a semicolon to tell Flash that it ends there.

NB: please replace anything between < >, e.g.:

 var numberOfTrials:int = 3;

I. Variables – Basic Data Types
 var <varName>:<dataType> = value;

• Numbers:
 int : whole numbers +/- (integer)
 uint : whole numbers + (unsigned integer)
 Number : digit numbers
• Letters/text:
 String : all kinds of text, within "quotes"
• Logical (yes or no):
 Boolean : true or false
• Collections:
 Array : any number of values or other variables

I. Variables – Constants
Constants are a special (not-so-variable) variant.

• Similar to variables, but can be assigned a value only once
• To easily see the difference, I use UPPERCASE_NAMES:

 const <CONST_NAME>:<dataType> = value;

• Use constants to define key values, e.g.:

 const EXP_CONDITION:uint = 1;
 const DEBUG:Boolean = true;

I. Variables – Scope
Remember our first piece of code (Test.as)?
package {
 import flash.display.MovieClip;
 public class Test extends MovieClip {
 var myGlobalVar:int = 3;
 public function Test() :void {
 // this is the constructor function
 // put your code between these {curly brackets}
 var myLocalVar:int = 3;
 trace(myLocalVar);
 }
 }
}
Scope: Variables have a so called ‘scope’. That means they are accessible only in a
certain area, depending on where you declare (make) them.
Each area is delimited with {curly brackets}. Use TABs whenever you use curly brackets.

Global and local: The most important scope distinction to make is between the Class
level (global) and inside one (of many) functions inside the Class (local).

Additional (scope) properties you may encounter: public, private, internal,
protected, static, final.

Exercise 2 - Variables
1. Download the epw_ex2.zip file from www.wouboe.nl.
2. Open Exercise2.as and Exercise2.fla in Flash.

Hint: Use trace(…); in the assignments below to send output to the
output box at the bottom of the screen.

1. Make a global variable called varA (type int) with value 1.
2. Inside your constructor function, make a local variable varA (also

type int), but with value 2. Are they the same?
3. Now make another local variable varB, also in your constructor

function. Can you trace it from within your second function?
4. Make two local variables: varC1 (int) with value 2 and varC2

(String) with value "Hello". Can you combine them and then trace
them? Can you assign an integer value to varC2, after we’ve given it a
type?

5. Challenge: Make two variables: a (int) = 3 and b (int) = 5. Make a
script that swaps the values of a and b (so in the end, a is 5 and b is 3).

http://www.wouboe.nl/

II. Operations - Simple
Operations are used to modify values and variables.

Simple operators:

+ (addition with numbers, concatenation with strings)
- (subtraction)
* (multiplication)
/ (division)
% (modulo: finds remainder after division of one number by another)

Special: To shorten things a bit:

a = a + 1;
a += 1;
a ++; (only works with increment 1)

This also works for -=, *=, /= and %=.

II. Operations - Equations
Equation operators:
 == (equal)
 >= (greater than or equal to)
 > (greater than)
 < (less than)
 <= (less than or equal to)
 != (not equal)

Note:
• with Strings we only use == and !=
• = sign always on the right
• = is the sign for assigning a value to a variable
• == is the equation sign, where two values are compared
• (=== also exists: strict equality; not important now)

II. Operations - Logical
Logical operators:
 && (AND)
 || (AND/OR)
 ! (NOT, converts whatever its next to the opposite Boolean value:

 !false == true
 !true == false

Given x, y:

x y : x && y x || y
false false : false false
false true : false true
true false : false true
true true : true true

II. Operations - Example
Given:
var a:int = 8;
var b:Number = 2.5;
var c:String = "hello";
var d:Boolean = false;

((a > b) || (c == "HELLO" && !d))

∴ (true || (false && (! false)))
∴ (true || (false && true))
∴ (true || (false))

∴ true

III. Decisions - if / else (1)
Decisions are used to make choices, to make code dynamic.

When deciding if a value or a variable conforms to a certain condition,
we can use the if / else statement:

if(<conditionA> == true) {
 // execute commandA;
} else {
 // execute another command;
}

Note:
• The curly brackets {...} These denote a section of code to be

executed, with its own scope.
• // means the rest of the line is comment (skipped by Flash)

III. Decisions - if / else (2)
More elaborately, one can make several levels of (nested) if / else trees:

if(<conditionA> == true) {
 if(<conditionB> == true) {
 // execute commandAB;
 } else {
 // execute commandA;
 }
} else {
 if(<conditionB> == true) { // So A is false; B is true
 // execute commandB;
 } else {
 // don’t execute any command;
 }
}

Note:
• To denote nesting, use TABs whenever you use curly brackets.
• The else condition automatically runs when the corresponding if conditions are false.
• if can occur without a consecutive else. Then just nothing happens.

III. Decisions - if / else (3)
Another use of consecutive if / else statements is the following:

if(myAge <= 22) {
 // execute commandA;
} else if(myAge == 23){
 // execute commandB;
} else if(myAge == 24){
 // execute commandC;
} else if(myAge == 25){
 // execute commandD;
} else {
 // execute commandZ;
}

Note:
• Running from top to bottom, once one of them is true, the {…}

code is executed and we exit the if/else tree.

III. Decisions - Switch!
For this last if-variant, a nice alternative exists: The switch-statement:

switch(myCondition) {
 case PLACEBO_CONDITION:
 //execute commandA;
 break;
 case EXPERIMENTAL_CONIDITION:
 //execute commandB;
 break;
 default:
 // execute commandZ;
}

Note:
• The switch-statement is useful for readability (use with constants)
• Must use break command to exit the switch.
• The default command equals the general else-statement

Exercise 3 - Decisions
1. Download epw_ex3.zip from www.wouboe.nl.
2. Open Exercise3.as and Exercise3.fla in Flash.

3. Make a decision tree that determines whether

the randomly generated value of variable
rand falls within certain categories.

4. Make a switch statement that determines in
which condition we have been put.

5. What happens in a switch if you leave out
the break statements? (try it!)

http://www.wouboe.nl/

IV. Repetitions – Loops
Repetitions are used to make multiple use of the same code.

Loops execute some code repeatedly until a certain condition is met.
for(var <counterName>:<dataType> = startingValue;
 <counterName> < maximumValue;
 <counterName> ++) {
 // do something;
}

e.g.:
for(var i:uint = 0; i < 5; i ++) {
 trace(i);
}

Note:
• The trace() function allows you to output any value to the debug panel.

Exercise 4 - Loops
1. Download epw_ex4.zip from www.wouboe.nl.
2. Open Exercise4.as and Exercise4.fla in Flash.

3. Create a for loop that repeats exactly 4 times. Use the loop

to trace the numbers 3 5 7 9, consecutively.
• Challenge: instead, call the trace function only once; make it as

short / elegant as possible.
4. Now have it trace the numbers 9 7 5 3.
5. Write some code that counts from 1 to 10 and decides for

each number whether it’s odd or even. Use:
• for
• if / else
• trace()

6. Challenge: Create an Array containing the numbers 11 to
30. Loop through this array and calculate the factorial
(11*12*13*…) of only the numbers that are dividable by 3.

http://www.wouboe.nl/

	Psychological Task Design �& Development� �A Programming Workshop�Part IIB – Programming Basics�
	4-Step Programme to Programming
	I. Variables - Names
	I. Variables - Syntax
	I. Variables – Basic Data Types
	I. Variables – Constants
	I. Variables – Scope
	Exercise 2 - Variables
	II. Operations - Simple
	II. Operations - Equations
	II. Operations - Logical
	II. Operations - Example
	III. Decisions - if / else (1)
	III. Decisions - if / else (2)
	III. Decisions - if / else (3)
	III. Decisions - Switch!
	Exercise 3 - Decisions
	IV. Repetitions – Loops
	Exercise 4 - Loops

