# Psychological Task Design & Development

A Programming Workshop Part I<sub>B</sub> – Task Design & Development

Wouter Boendermaker, M.Sc.

Johanna Quist, M.Sc. Soraya Sanchez Maceiras, B.Sc.

University of Amsterdam

EPP Programming Workshop – February 12-13, 2015

## The Design Process

- Many psychological paradigms focus on mental processes
  - E.g., executive cognitive control functions, selective attention, automatic associations, subliminal processing, etc.
- Their specs are usually very precise, but sometimes hard to determine. So how to translate descriptions to specific task?







#### Documentation

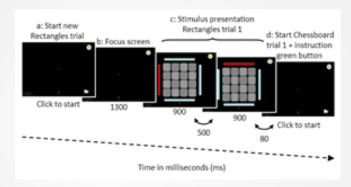
- The answer is rigorous design documentation (a.k.a. requirements engineering)
  - Building a program in general, or a complex psychological task in our case, may take quite some effort
  - Many decisions are made; many changes to the initial design
  - Easy way to communicate your design with others
  - Half of your methods section already done ©
- Let's assume most of the details are in the papers you use as a basis. And you've added some ideas of your own
  - What level of detail do you need to describe to develop (program) the task?

## Design Details (1)

- Block structure
  - How many blocks; how many (practice) trials per block (e.g., IAT)?

| Block | left                         | right                        | type     |
|-------|------------------------------|------------------------------|----------|
| 1     | Positive (6)                 | Negative (6)                 | Practice |
| 2     | Soda (6)                     | Alcohol (6)                  | Practice |
| 3     | Positive (12) + Soda (12)    | Negative (12) + Alcohol (12) | Practice |
| 4     | Positive (24) + Soda (24)    | Negative (24) + Alcohol (24) | Test     |
| 5     | Alcohol (6)                  | Soda (6)                     | Practice |
| 6     | Positive (12) + Alcohol (12) | Negative (12) + Soda (12)    | Practice |
| 7     | Positive (24) + Alcohol (24) | Negative (24) + Soda (24)    | Test     |

#### Data output


- Which variables do you want to measure (per trial)?
- E.g., #block, #trial, stim, response, feedback, reaction time, etc.

#### Stimuli

- Pictures (size, placement); words?
- How many categories?

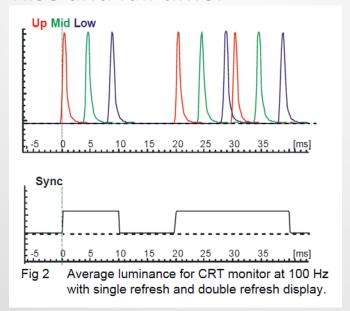
## Design Details (2)

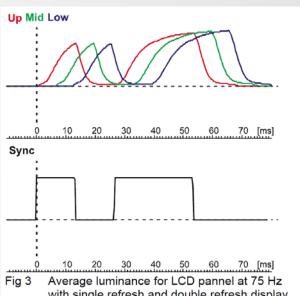
- Trial structure (make a visual timeline with ms)
  - Fixation-stimulus-response window-inter trial interval, etc.



- Feedback structure
- Instructions (which and when)
- Counterbalancing; randomization algorithms

#### Technical Considerations (1)


#### Timing accuracy


- Specific timing is very sensitive to noise from hardware (e.g., input devices: keyboard, mouse, fixed button, joystick) as well as software influences (background virus scans, choice of programming language)
- This may be very important for stimulus presentation, and RTmeasurement
- Output / synchronization: connection with fMRI / EEG materials: synchronization pulse via LPT port

## Technical Considerations (2)

#### Display issues

- Screen size and resolution; aspect ratio (4:3 vs. 16:9)
- Refresh rate
  - TFT vs CRT vs tablets; most standard TFT have 60 Hz (16.67 ms/frame)
  - Stimulus duration therefore multiple of 16.67 (so 25 becomes 33.3)
- Rise and fall time:





with single refresh and double refresh display.

## The Development Process

Or: Documentation, Part II

 As the design may change during the development stage, it is important to keep it up to date!

While developing, we use a 2<sup>nd</sup> form of documentation:

- Code comments that explain how and why things were done in a certain way.
- This may seem a lot of on-the-side prep work, but it will save you loads of trouble and time in the end.